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Abstract Using a numerical transfer-matrix method. we have determined lhe number of 
zm-temperalure metaslable ~Iates and lheir distribution in energy and magnetization for 
random-field lsing chains. Both discrete and continuous distributions of lhe random fields 
are mnsidered. The degeneraq and slmcture of the metascable slates and ground States 
for the discrete case may be understood in terms of a domain picture. Algorithms for 
generating exact gmund-slate mn6gurations for b l h  discrete and oontinuous distributions 
are described. and these demonstrate that h e  ground states of the random-field Ising 
chain have a hierarchical stmcturc 

1. Introduction 

Despite much effort since its introduction 15 years ago [l], many properties of the 
random-field model [2-4] are still not understood. Even the simplest model, the 
ferromagnetic king chain with random fields, has been incompletely explored, as the 
frustration renders the problem non-trivial even in one dimension. The random-field 
Ising chain is defined by the Hamiltonian 

where the spins take values Si = &l, the on-site external fields hi are quenched 
variables chosen from a probability distribution P(h) ,  and the interactions J > 0 are 
ferromagnetic. While the first term in 3t favours ferromagnetic alignment of the spins, 
the second favours alignment with the on-site external field. The competition between 
these terms is the source of much of the complexity of the model; in particular, there 
exist exponentially large numbers of zero-temperature metastable states. As in the 
case of mndom-bond Ising spin glasses, the number N, of these states grows with 
system size L as N,  - 2mL, where the value of a: depends on the system. The 
large number of metastable states is linked to extremely slow relaxation at non-zero 
temperature. 

The random-field king chain with discrete fields hi = &h (hereafter referred to 
as the Y h  model') has k e n  studied extensively at zero temperature, either directly 
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[ST, or indirectly through investigations of the equivalent problem of the f J spin 
glass (SG) chain in a uniform magnetic field h [%lo]. However, the zero-temperature 
metastable states of the random field king model (RFIM) chain have not been studied 
except indirectly through studies of the related problem of classical diffusion on a 
random chain [ll, 121. 

In the present paper we study the number of metastable states, and their 
distribution in energy and magnetization for both discrete pimodal) and continuous 
(Gaussian and uniform) distributions P(h)  of the random fields. The numerical 
transfer-matrix method employed was originally developed for the king spin glass 
and is described in detail in a previous paper [13]. A chain consisting of L king 
spins has a total of 2, possible states. The number of metastable states N ,  is the 
subset of these states in which each spin Si is aligned with the total magnetic field 
Hi acting on it, that is 

where the unit step function 0 

1 i f x > o  
0 otherwise 

O(x) = 

expresses the constraint of metastability that the spin Si must be aligned with the total 
field Hi = hi + JS,-, + JSitl at site i. We define a 2 x 2 matrix NL(SL,SL-l) 
which gives the number of metastable states of the chain of L spins for the four 
configurations of the last two spins, S, and SL-l. The matrix N,,, for a chain of 
length L + 1 is then obtained recursively as follows 

N L + i  (SL+i 7 s L )  = NL(  SL, sL- 1) Q( HL SL 1. Pa) 
S'-, 

The matrix is initialized to have all elements equal and with their sum equal to unity. 
A value for the random field hi is chosen from the distribution P ( h )  and the new 
matrix is calculated. At each step the matrix is again normalized so that the sum of 
the elements is unity and the normalization factor ai is extracted. The logarithm of 
the number of metastable states per spin is obtained by averaging these factors as 
follows 

The distribution of metastable states as a function of the energy per spin 
(e) and the magnetization per spin (m) is determined by inserting into (3a) the 
factor exp(pE, + P I S L ) ,  where EL = -JS ,SLt ,  - hLSL.  This factor weights 
the contribution of each state according to its energy and magnetization. The 
parameters p and p, are Lagrange multipliers which determine the average energy 
and magnetization respectively. Recursion relations similar to (3a) for the derivatives 
of N, with respect to (p , ,p)  are easily obtained [13]. Thus, to each pair (pI,p) 
correspond a magnetization m and an energy E ,  and the sum of the matrix elements 
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N,(p, ,p) = NL(SL,SL-,;pl,p) is averaged as in (3b) to yield the distribution 
of metastable states (l/N)ln N,(m,&) as a function of the parameters (p,,p), or 
equivalently (m,e) .  Our method reproduces the exact results [5,8] for the ground- 
state entropy and energy of the &h model with an error of less than 1% for a chain 
of length 10'' spins. 

In the case of the king SG chain, the metastable states are simply obtained from 
the ground state by flipping clusters delimited by weak bonds [14], and so the domains 
defined by these clusters are easily identified. Likewise, the alternating sections of 
up and down spins in the metastable states of the RFIM chain can be obtained by 
overturning clusters, starting from a ferromagnetic state. 

In section 2, we determine the number of metastable states and their distribution 
in energy and magnetization for the discrete f h  model with equal probability of 
positive and negative on-site fields. The denegeracy and structure of the metastable 
states and the ground states are explained, and an algorithm for finding the ground 
states is given. 

In section 3, the distribution of metastable states for a random-field chain with 
the fields chosen from continuous distributions is investigated. As for the discrete 
case, the metastable states and ground states are understood in terms of a domain 
picture and a ground-state algorithm is also described. 

2. fh distribution 

We consider first the simplest random field model, the ferromagnetic king chain with 
discrete random fields + h  or -h (h > 0) occurring with equal probability. Clearly, 
only values of h in the range 0 < h < 25 are of interest: for a large field h > ZJ, 
all spins align in the direction of their site-random fields so that there is a unique 
'metastable' state, while for h = 0, the problem reduces to the well known one- 
dimensional Jsing model which has two degenerate ferromagnetic 'metastable' states. 
In this range of fields (0 < h < 2 4 ,  all states which are metastable at one value 
of h are metastable at any other value, since only the signs of the random fields 
hi are relevant to the metastability (to be shown later). Therefore, for the purpose 
of counting the number of metastable states, only a single magnitude h need be 
considered. However, the magnitude of h affects the energies of the states, and there 
are many energy crossings as h is varied, affecting the distribution (l/N)ln Ns(m,&).  

In the metastable states of the &h RFIM chain, a domain comprising t up 
spins Sit,, ..., Sitf all up, delimited by down spins Si,Sit,,,, can occur only 
where the random fields satisfy the following restrictions: hi  < 0, hitl > 0 and 
hitf > 0, hitft, < 0. (For down domains, the inequalities are reversed.) This is 
because each of the two spins adjacent to a domain wall have a net bond contribution 
to the local field of zero, since their nearest-neighbour sites necessarily have spins 
pointing in opposite directions. Thus, the metastable states of the RFIM chain are 
characterized by the existence of ordered domains of opposite order parameter, 
domain walls possibly occurring where the random fields change sign. 

The f h  model has well known peculiarities, for example, the unusual behaviour 
in the ground-state entropy and staggered magnetization [5,8]. In particular, the 
discreteness of the random field distribution gives rise to a ground state highly 
degenerate at all values of h. Since the random field may take only the values +h or 
4, there are many positions of the domain walls which are energetically equivalent. 
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(See, for example, the degenerate configurations (b), (c) and (d) of figure 1.) This 
contributes to the degeneracy in the ground state at any value of the field h. The 
energy cost of inverting an arbitraly block of spins bounded by two unbroken bonds is 
6E = +2(25) - n(2h), where n is the net excess @ositive n )  or deficit (negative n )  
of spins aligned with their on-site fields in their final configuration. When h = 2 J / n ,  
this energy cost vanishes and the existence of certain well defined clusters which a n  
be inverted with no energy cost leads to spikes in the ground-state entropy at fields 
h = 2J/n,  where n is a positive integer. These ground-state degeneracies have 
previously been observed for the Sing chain with random exchange &tJ [SI and for 
the Ising chain with random field h, h [7]. Degeneracies also arise in the two- 
dimensional Ah RFM and are associated with the existence of similar clusters in two 
dimensions [lS, 161. In the same way, energetically equivalent positions of the domain 
walls can occur for the metastable states of the izh chain, giving rise to large numbers 
of degenerate metastable states. 

magnetic 
field 

J<hQI 
flip excess 

of n=l  

h 4  
tlip excess 

of n=2 

nguw I 'The ground sates of the h h  RFIM chain are generated successively from 
gmund Sales at higher strengths 01 the random fields. (See text lor details.) 'The 
directions 01 the on-site random fields are indicated by the mows at the lop of lhe 
figure. The 'up' steps represent up spins and the 'down' steps down spins, while the 
vertical lines between them indicate lhe positions of the domain walls Small redangles 
have teen drawn at positions curresponding to sites where the spin is aligned wilh iU 
random field. 

' :I ( C )  O D D D  0 a n a n a  

(d) o n o  n o  P ~ D L I D  

(e) m 0 a m a m n  

We now present a picture of the energetics of an king chain in a i h  random 
field which gives some understanding of the nature of the ground state, and why the 
degeneracy arises. A procedure for the construction of the ground states for arbitrary 
magnitude of random field is developed from this picture. A cluster picture similar to 
ours has been used to calculate explicitly the ground-state magnetization and residual 
entropy for a particular case [7]. 

The generation of ground states for decreasing magnitudes of the fields can be 
described as a 'smoothing' process, in which the domains of the ground states become 
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successively larger with decreasing field as it becomes energetically favourable for 
larger domains with more spins aligned in the direction of the on-site random fields 
to be reversed or ‘flipped’. This is best demonstrated by a simple example, as shown 
in figure 1 for the discrete model. Consider the sequence { h i }  of random fields 
whose directions are represented by the arrows in figure l(a).  For field magnitude 
h > 2 5  the ground-state configuration has all spins of the chain aligned with the 
on-site fields. As the magnitude of field is decreased such that J < h < 2.7, it is 
energetically favourable for domains with a net excess of n = 1 spin aligned in the 
direction of the on-site fields to be reversed in the new ground state. In this case, 
this may happen in one of three ways (shown in figures l (b) ,  (c) and (d)) ,  all of 
which have the Same energy (6h +U). Hence the ground-state entropy is large. For 
fields $ J  < h < 5, domains with a net excess of n = 2 spins aligned with the on- 
site fields must be reversed in the new ground state. This leads to the ground-state 
configuration in figure I@), which may be generated by the Same procedure from 
any of the three ground-state configurations at the previous step. In this particular 
example, the procedure can only be carried out to n = 2, since no domains with a net 
excess of n = 3 spins aligned with the on-site fields occur. It is seen that, in general, 
the ground states for field strength 2 J / ( n  + 1) < h < 2 J / n  can be generated from 
the ones for 2 J / n  < h < 2 J / ( n  - 1) by reversal of domains which have a net 
excess of n spins aligned with the on-site fields. In this manner, the ground states 
of the fh RFIM chain form a ‘hierarchy’ in which the ground states for successively 
lower field strengths are derived from the ground states for the previous range of field 
magnitudes by flipping clusters of increasing size. This implies that for smaU fields 
h < 2.7, large-scale rearrangement of spins occurs in the ground-state configuration 
as h is varied, and that the average net magnetization of the ground state of the f h  
RFIM chain d l  be zero for infinitesimally small fields. Thus the net magnetization 
in the ground state changes discontinuously from m = 1 for the non-random (zero 
field) Wing chain to m = 0 for the RFIM chain. 

Although aU the configurations in the hierarchy of ground states are metastable 
at all values of the magnitude of the field, not all metastable states are contained 
within the hierarchy. The hierarchy of ground states is comprised of those metastable 
states for which the field energy is a minimum for the same bond energy. In other 
words, a configuration of the ground-state hierarchy is a metastable configuration 
in which, for a given number of domain walls, the domain walls are positioned to 
minimize the field energy. Thus, the configurations contained in the hierarchy will 
be the minimum energy metastable states for a fixed number of domain walls. This 
also means that while a ground state for fields 2 J / ( n  + 1) < h < 2 J / n  has no 
domains containing a net excess of n or fewer spins aligned with their on-site fields, 
the domains of a metastable state may contain an arbitrary number (a net excess or 
even a net depletion) of aligned spins. A similar picture of the ground states and 
metastable states of the f h  RFIM is expected to be valid for any dimension d for 
which the fully ferromagnetic state is unstable at zero temperature, namely for d 4 2. 

In the rest of this section, we give the results of numerical calculations for the f h  
RFIM chain. Figure 2 show the projection of the distribution (l/N)ln N,(m, E )  of 
metastable states onto the m - E  plane for a chain of 16 spins with h = 1.5.7, chosen 
to be well away from the anomalous fields h = 2 J / n .  Each triangle represents a 
pair of parameters (p, , p) used in the algorithm and is located at the corresponding 
magnetization m and energy E .  The values of m and E for which there are no 
metastable states are located in the region outside the boundary formed by the 
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densely packed triangles. Figure 2 is representative of the metastable states of the 
&h RFIM chain for any magnitude h in the range 0 < h < 25 (except perhaps 
h = 2J/n). For different magnitudes of the random fields, the energies are shifted 
and rescaled. An important feature of the function ( l / N ) l n  N , ( m , E )  is that it does 
not vanish smoothly everywhere on the boundary, but drops discontinuously to zero 
at both the ground-state energy E = E ,  and the maximum energy E = emu, indicating 
that both the ground state and the state of maximum energy are highly degenerate. 

-0.4 - - 

The discontinuities at E = and E = em= are shown in figure 3 which shows a 
cut through the function (l/N)ln N , ( m , E )  on the m = 0 plane. The distribution 
is clearly asymmetric about the most probable energy. Figure 4 shows the faces 
of the function (l/N)ln N , ( m , E )  at the planes corresponding to (i) the ground- 
state energy E = e o  = -1.663 and (ii) the maximum energy E = smX = -0.5852. 
There are exponentially many metastable states at both the ground-state and the 
maximum energies, the degeneracy being weaker at the latter. At both energies, the 
magnetizations are in the range -0.15 5 m 5 0.15. 

-1.8 

3. Continuous distributions 

For distributions with weights in both regions Ihl > 25 and Ihl < 25, there are 
clearly two kinds of sites. If lhil > 2 5  the spin at site i is 'pinned' in the direction of 
the external field hi,  regardless of the configuration of its neighbours; if lhil < 25 
the spin can be either up or down, depending on the contribution (-25, 0 or 25) 
from its neighbours to the total field at site i. 

- - 
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0.25 1 
3 0.20 - 
** 
5 0.15 - 
z 

0.10 

0.05 1 
0 
-1.8 -1.8 - 1 . 4  -1.2 -1.0 -0.8 -0.6 -0.4 

Energy L 

- 
Figure 3. The distribution (I/N)ln Ns(e) of metastable slam with respect to energy c 
for the f h  RPIM chain with h = 1.5J. 

o.osr . ,  , , , .  , , , , , ,  , , , , , , , , .  , , , , , .  , '1 0.035 ~ , . . . , , , , , , , , , , , , , , , , , , , , , , , , , , 

%re 4 0.1u parallel lo lhe mauh: (a) a view of lhe plane through the 
funaioo (1 /N) ln  NS(m,e) at lhe ground-slale energy, and (b) a similar plane through 
( l / N ) m  at the maximum energy of the metastable states. 

With respect to metastable states, the RFIM chain with random fields tkom 
continuous distributions can be considered as follows: spins at sites with strong 
(lhl > 25) random Belds are pinned, defining sections of the system containing only 
random fields of magnitude less than 25. Within these sections, domains necessarily 
consist of two or more spins. Since the exact magnitudes I hi I of the external random 
fields do not affect the metastability of the states, these sections are similar to finite- 
length f h  RFIM chains, but subject to special boundary conditions due to the pinned 
spins, which may have a non-local effect. (The effect of the strong fields becomes 
more evident for the ground state.) 'Tbe pinning effect of strong fields extends beyond 
the single site on which it occurs only if the weak fields on sites adjacent to the pinning 
site are of the same sign as the strong field at the pinning site. In fact, the range 
of the pinning effect is limited to just those sites, and the rest of the system a m  
like independent f h  RFIM chain segments: domain walls within each segment occur 
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where the random fields change sign, in a manner such that the orientation of the 
domains is consistent with the random fields (as in section 2). 

From this simple structure of the metastable states it is seen that the details of 
the distribution, apart from the probability of strong fields, do not affect the total 
number of metastable states nor the magnetizations of the metastable states. These 
details affect the energy, however, and one obvious effect is that the ground state is 
nondegenerate. 

An algorithm for generating the ground state of the RFlM chain with a continuous 
distrihution P(h)  of random fields can be constructed by analogy with that for 
discrete distributions. Clearly, in the ground-state configuration the spins at sites 
where strong fields lhil > 25 occur are ‘pinned’ in the direction of the fields. We 
consider then segments of the chain bounded by two consecutive strong fields such 
that except for spins at the lint and last sites of the segment, all spins ha\re weak 
fields lhil < 2 5  acting on them. In order to incorporate the effect of the strong fields 
(which may extend beyond a single site) the segments thus defined must include the 
two bounding strong-field sites. 

The configuration of a particular segment in the ground state may be explicitly 
constructed, and the ground state of the entire chain follows from joining the 
segments. For a given segment, the initial configuration is chosen such that every 
spin is aligned with the random-field direction. This defines ferromagnetically aligned 
clusters of all sizes (nclusters, where n = 1,2, ...) which may be sequentially 
reversed to generate the ground state. 

The change in energy due to reversal of an n-cluster is 

where the sum is Over the sites i in the cluster, from which we see that for any cluster 
with his i  > 25, the spins of the cluster are aligned with their on-site fields in 
the ground state. 

We then follow a sequential procedure similar to that of the previous section 
where we Ripped clusters having a net excess n of spins aligned with the on-site 
fields when h < 2J/n, where n was an integer incremented at each step. The 
natural extension of this to continuous distributions is to make n a continuously 
varying increasing parameter. In the discrete case, an increasing n was associated 
with reversal of clusters with increasing net excess of spins aligned with their random 
fields. The analogue of this for the continuous case is the reversal of clusters with 
increasing net excess of field energy. Thus, the domain with the smallest energy 
cost less than 25 is reversed. Although accidental degeneracies may occur, their 
frequency does not increase exponentially with the number N of spins, and so may 
be neglected. Reversal of the lint duster creates a larger cluster by merging it with 
its two neighbouring clusters, so that the clusters must be redefined and the energy 
of the new cluster calculated. At each step, the cluster with the smallest random-field 
energy cost is reversed, and the clusters redefined. 

The sequential procedure may be summarized as follows. (1) The initial clusters 
are defined by the configuration in which all spins are aligned with their fields. (2) 
The cluster with the smalht random-field energy cost less than 25 is reversed and (3) 
the clusters are redefined and the field energy of the new cluster calculated. Steps (2) 
and (3) are then repeated until no more clusters can be reversed without increasing 
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the energy. In this way, we consider larger and larger domains, whose on-site field 
energies sum to less than 25 and which do not contain any sites with random field 
lhil > 25. Tbus the ground state contains large domains. 

In fact, the domains are as large as possible, subject to the constraints imposed 
by the pinning of spins by strong (Ihil > 25) random fields, as well as by infrequent 
occurrences of consecutive fields of the same sign whose magnitudes sum to greater 
than 25. The probability that a domain of n spins is stable in the ground state is 
given by the probability that the sum of the n random fields is greater than 25. 
Since the random fields are independent, the probability distribution for the sum of 
n random fields is given by 

where the width of the distribution increases as fi. The probability that the sum of 
n fields is greater than 2J is 

21:dzPR(z) = - Jm exp(-zZ)dx f i  @ J  

which increases with n. Hence, in the groundstate configuration, large domains 
are more Likely to occur than small domains; small domains are a result of unlikely 
events. Of course, the actual size of the domains is governed by the constraints 
imposed by strong fields, and consecutive random fields in the same direction which 
have a non-negligible collective effect. 

Since the ground state of the WIM chain is strictly non-degenerate for the 
continuous distributions, the distribution of metastable states ( l /N)ln N$(E)  goes 
to zero at e = E,,, as well as at E = E,,,, as in figure 5 which shows a typical density 
of metastable states curve for a Gaussian distribution of random fields with width 
h = 0.75. The distribution of metastable states with energy very closely resembles 
that for the random-bond king model with a continuous distribution of random bonds 
1131. The energy spread of the distribution of metastable states decreases with the 
width of the distribution of the random field, as expected from the pinning picture. 

The low-energy excitations of the RFlM chain are due to reversal of domains, and 
hence the behaviour at low energies should be similar to that of a set of weakly- 
coupled two-level systems, namely the expected density of metastable states at low 
energies should be given [14] by 

(l/N)hNs(~-~o) - ( E  - E , , ) ' / ~ .  (9) 

We tind the exponent to be equal to $, within the accuracy of our numerical results. 
Four cases of continuous distributions were considered, distinguished by type- 

either Gaussian or uniform and the width of the distribution-either wide or narrow. 
The projections for wide Gaussian and uniform distributions Sith the same integrated 
probability s:','," P ( h )  dh = 0.4323 are shown in figures 6(a) and 6(b), respectively. 
Figures 7(a) and 7(b) are the projections of the corresponding narrow distributions 
with s:: P (  h) dh = 0.9923. 

T$@cally, the projection of the distribution of metastable states (l/N)ln N,( m, E )  

onto the m - - ~  plane for continuous distributions has a shape which rapers off toward 
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6.30 

1 0.05 

01.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 

Energy z 

Q u m  5. A typical density of metastable stales for a Gaussian dislribulion of mndom 
fields with width h = 0.75J. 

&m,, (see figures 6 and 7). Again, the total number of metastable states and the 
maximal magnetization of the metastable states depends only on the total probability 
of fields having magnitude greater than 2 5 ,  and only the energies rescale and shift 
with wrying distributions of random fields. The maximal magnetization mmlx of the 
metastable states must be less than 1 - Jz P(h)  dh; this represents an upper limit 
since strong fields whose effect extends to spins at adjacent sites and strings of sites 
where random fields all of the Same sign sum to I Cy=l hjl > 2 5  both contribute to 
reducing the magnetization of the maximally magnetized state. 

The shift in energy of figures 6(a) and 6(b) is primarily due to the field energy of 
fields of magnitude greater than 2 5 .  This can be seen clearly from the energy of the 
state with maximal magnetization, that is the state with all spins up except for those 
which are constrained to be in the opposite direction by single strong down fields, or 
clusters of down fields. The energy of such a state is approximately: 

-w I _ ,  P ( h ) h d h  (10) 
2J 
N E = ET + 2 x - (no of down domains) - 2 

where E, = -J  + 1:- P(h)h dh  = - J  + C7(N-'Iz) is the energy per spin of the 
state with all spins up, and the contributions to the field energy from spins aligned 
with small (h < 25)  fields have been neglected. Since the number of down domains 
in the state of maximal magnetization depends strongly on the total probability of 
fields less than -25  (this number also depends on the details of the distribution 
through the probability that consecutive fields have the same sign and magnitudes 
which add up to greater than 2 4 ,  the energy due to domain walls should be roughly 
the same as long as these probabilities are the same. Thus the difference in energy 
between the maximally magnetized metastable states for two symmetric random-field 
distributions with the same area J!iJ P ( h )  dh is largely due to the difference in field 
energy of random fields with magnitude greater than 25 pointing in the direction 
opposite to the magnetization. Then the shift in energy for the wide distributions of 
figure 6 is roughly 
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P@m 6 Projection of (I/N)ln N.(m,c) onto the m - e plane for wide distributions 
of random fields: (a) Gaussian and (b) uniform. Each triangle represents a pair 
of paramelen (&,,6) used in the algorithm and is located at the mrresponding 
magnetization m and energy E .  

6 E  rr Eh(Gauss) - E,(uniform) 

P 2 ( h ) h d h + 2 J m  2J P,(h)hdh 

= -2.372 - (-1.881) = -0.49 

which is not too far flom the actual shift of 6 E  = -0.48. This picture breaks down 
for the narrow distributions. Since there are few pinned spins, the metastable state 
of maximum magnetization is almost ferromagnetic, so that its energy is nearly - J .  
The energies of the metastable states are no longer just shifted, but depend strongly 
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on the random-field distribution since the narrow distributions differ considerably in 
the region -25 < h < 2J, while the wide distributions were sufficiently similar in 
this region. 

A Summary 

We have determined the number of metastable states and their distribution in energy 
and magnetization for F m M  chains with a discrete pimodal) distribution, and with 
two continuous distributions: Gaussian and uniform. The degeneracy and structure 
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of the metastable states and ground states may be understood in terms of a cluster 
picture. Algorithms for generating exact ground-state configurations for both discrete 
and continuous distributions have demonstrated that the ground states of the RFIM 
chain have a hierarchical structure. 
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